T 1					
Reg. No:					
NEY. NO.					
1105.10.					
0					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B Tech II Year I Semester Supplementary Examinations Nov-2020 ENGINEERING MATHEMATICS - III

(Common to all Branches)

Time: 3 hours Max. Marks: 60M

Answer all Five Units

 $5 \times 12 = 60 \text{ Marks}$

UNIT-I

1 a If f(z) is analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f(z)| = 0$. 5 M

b Find the analytic function f(z) = u + iv whose real part is $e^{x}(x \sin y + y \cos y)$. **7 M**

OR

2 a Evaluate $\int_{c}^{c} \frac{\cos z - \sin z}{(z+i)^3} dz$, where c = |z| = 2 using Cauchy's integral formula. **6 M**

b Evaluate $\iint_{c} \frac{3z^2 + z}{z^2 - 1} dz$ where c is the circle |z - 1| = 1.

UNIT-II

3 Use Cauchy's residue theorem to evaluate $\int_{-\pi}^{\pi} \frac{1}{5 + 4\sin\theta} d\theta$. 12 M

OR

4 a Find the bilinear transformation which maps the points (0, 1, i) in to the **6 M** points (1+i, -i, 2-i).

b Prove that the transformation $w = \sin z$ maps the families of lines **6 M** x = y = constant into two families of confocal central conics.

UNIT-III

5 Compute the real root of the equation $xe^x = 2$ by using Regula-false method.

12 M

OR

6 a Compute the value of f(x) when x = 1.4 from the given table of values.

6 M

X	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

by using Newton's forward interpolation formula.

b Using Lagrange's interpolation formula, find the parabola equation passing **6 M** through the points (0, 1), (1, 3) and (3, 55).

Q.P. Code: 16HS612

R16

UNIT-IV

7 a Fit the curve of the form $y = a x^b$ for the given data.

7 M

X	1 2		3	4	5	6
у	2.98	4.26	5.21	6.10	6.80	7.50

b Evaluate $\int_{0}^{1} e^{-x^2} dx$ taking h = 0.2 by Simpson's $\frac{1}{3}$ rule.

5 M

OR

8 a Fit the curve of the form $y = a e^{bx}$ for the give data

5 M

X	2	3	4	5	6
у	8.3	15.4	33.1	65.2	127.4

b Evaluate $\int_{0}^{1} \sqrt{1+x^3} dx$ taking h =0.1 using Trapezoidal rule.

7 M

UNIT-V

9 a Solve y' = x + y, with y(1) = 0 by using Taylor's series method and calculate the **6 M** values of y(1.1) and y(1.2).

b Solve $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y(0)=1 by Picard's method and **6 M** compute the value of y(0.1).

OR

Write Runge-Kutta 4thorder formulae and use it to evaluate y(0.1), y(0.2) and **12 M** y(0.3) given y' = 1 + xy with initial condition y(0) = 2.

*** END ***